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Abstract
We consider the universal scaling behaviour of the Kondo resonance in the
strong-coupling limit of the symmetric Anderson impurity model, using a
recently developed local moment approach. The resultant scaling spectrum
is obtained in closed form, and is dominated by long tails that in contrast
to previous work are found to exhibit a slow logarithmic decay rather than
a power-law form, crossing over to characteristic Fermi liquid behaviour on
the lowest energy scales. The resultant theory, while naturally approximate, is
found to give very good agreement for essentially all frequencies with numerical
renormalization group calculations of both the single-particle scaling spectrum
and the self-energy.

1. Introduction

As a paradigm for the effects of strong, local Coulomb interactions, the Anderson impurity
model (AIM) [1] remains highly topical some forty years after its inception (for a com-
prehensive review, see [2]). Its essential physics in the strong-coupling regime of large on-site
interaction strength (U ) is that of the Kondo effect, characterized by a low-energy scale ωK;
and manifest famously in the many-body Kondo or Abrikosov–Suhl resonance appearing in
the single-particle spectrum D(ω). Although ωK itself naturally depends upon the interaction
strength, the fact that it is the sole low-energy scale means that the Kondo resonance exhibits
universal (U -independent) scaling in terms of ω/ωK alone.

An obvious question is: what is the form of the universal scaling spectrum? It is this we
consider in the present paper, in possibly the simplest context of the particle–hole-symmetric
AIM. Perhaps the first point to make is that we do not believe the answer to this question is
known, and that this reflects in part the well known difficulties in constructing approximate
theories for dynamical properties of the AIM. The problem is of course well understood at low
frequencies, where D(ω)−D(0) ∝ −(ω/ωK)

2 satisfies the dictates of Fermi liquid theory, as
arises directly from a simple low-frequency expansion of the impurity single-particle Green
function [2]. Such behaviour is however confined to the lowest of frequencies |ω|/ωK � 1.
Naive extrapolation of it leads to a rather trivial Lorentzian scaling spectrum, as indeed arises
in a variety of theoretical approaches; for example [2] microscopic Fermi liquid theory to
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leading order, the slave-boson mean-field approximation, or D(ω) approximated by the spinon
spectrum that may be obtained via the Bethe ansatz.

Numerical approaches by contrast, such as the numerical renormalization group (NRG)
[3, 4] or quantum Monte Carlo (QMC) [5, 6] calculations, reveal a very different behaviour
in the form of long, slowly varying tails that entirely dominate the scaling spectrum for
|ω|/ωK � 1, and are known to be important experimentally [7]. These are currently believed
[3–6] to be so-called Doniach–S̆unjić (DS) [8] tails, of asymptotic formD(ω) ∝ (|ω|/ωK)

−1/2,
reflecting physically an incipient orthogonality catastrophe. Such behaviour has however been
inferred by direct comparison of the numerical results to an empirical DS form [3–6]; and while
there is no doubt that they are thereby quite well described, we do not know of a theoretical
approach that (a) explicitly yields such behaviour (if correct), and (b) simultaneously recovers
the requisite Fermi liquid form as |ω|/ωK → 0.

We consider these issues within the framework of the local moment approach (LMA)
that has recently been developed [9–11] to handle in particular dynamical properties of
AIMs [9, 10]. The aims of the paper are straightforward, and threefold. (i) To obtain in
closed form the strong-coupling LMA scaling spectrumD(ω) for the symmetric AIM. This has
hitherto been determined numerically in reference [9], and shown to give very good agreement
with NRG results [4]. But it naturally precluded an explicit determination of the form of the
dominant spectral tails, which (ii) is our second aim. We find that these are not of DS form,
but rather exhibit a much more slowly varying logarithmic decay. This behaviour is shown
to be in large part independent of the details of the LMA, and we give further qualitative
arguments in support of it. (iii) In view of this we reassess comparison between LMA and
NRG results [4] for the scaling spectrum, concluding in particular that the slow logarithmic
tails are very well supported by NRG data. We consider in addition the scaling behaviour
of the conventional interaction self-energy �(ω), which the LMA correspondingly predicts
to diverge logarithmically for |ω|/ωK � 1. Since recent NRG advances [12] now permit an
accurate numerical determination of the self-energy itself, this too may be compared to LMA
predictions; very good agreement is again found.

Section 2 of the paper gives a brief introduction to the LMA, and the background required
for the remainder of the work; full details may be found in references [9, 10]. General
consideration of the scaling spectrum within the LMA framework is given in section 3; and
in section 4 the asymptotic behaviour of the spectral tails is deduced explicitly and compared
directly to NRG results [4]. In section 5 both the LMA scaling spectrum and resultant single
self-energy are considered on all frequency scales, and likewise compared to results from NRG
calculations. The paper concludes with a brief summary.

2. Background

The Hamiltonian for the AIM [1] is given in conventional notation by

Ĥ =
∑
k,σ

εkn̂kσ +
∑
σ

(
εi +

U

2
n̂i−σ

)
n̂iσ +

∑
k,σ

Vik

(
c

†
iσ ckσ + h.c.

)
. (2.1)

The first term refers to the host band of non-interacting electrons (with dispersion εk), and
the second to the impurity with on-site interaction U and site energy εi ; for the particle–
hole-symmetric (p–h-symmetric) AIM considered here, εi = −U/2 and the impurity charge
ni = ∑

σ 〈n̂i,σ 〉 = 1 for all U .
We focus on single-particle dynamics (at T = 0), embodied in the impurity Green

function G(ω) (↔G(t) = −i〈T {ciσ (t)c†
iσ }〉) and hence the single-particle spectrum
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D(ω) = −π−1 sgn(ω) Im G(ω). G(ω) is conventionally expressed as

G(ω) = [ω+ − �(ω) − �(ω)]−1 (2.2)

where ω+ = ω + i0+ sgn(ω). Here �(ω) = �R(ω) − i sgn(ω)�I(ω) (=−�(−ω)) is the
host–impurity hybridization, with �I(ω) = π

∑
k V

2
ikδ(ω − εk). The hybridization strength

�0 = �I(ω = 0) ∝ ρhost(ω = 0) is thus defined (with ω = 0 the Fermi level), and is non-zero
since the host is metallic by presumption. �(ω) = �R(ω)− i sgn(ω)�I(ω) is the conventional
single self-energy (excluding the trivial Hartree term, which cancels εi = −U/2).

Equation (2.2) merely defines the self-energy �(ω), via the Dyson equation thereby
implicit. As such it naturally invites a calculation of �(ω) based at heart upon perturbation
theory inU about the non-interacting limit. But the limitations of such approaches—in practice,
and certainly in the strong-coupling regime—are well known (see e.g. [2]); and a determination
of G(ω) via the conventional single self-energy is by no means mandatory. The LMA [9–11]
thus eschews such an approach completely, and instead employs a two-self-energy description
with G(ω) expressed formally as

G(ω) = 1
2 [G↑(ω) + G↓(ω)] (2.3a)

where

Gσ(ω) = [ω+ − �(ω) − �̃σ (ω)]
−1 (2.3b)

(and σ = ↑/↓ or +/−). The interaction self-energies �̃σ (ω), which by p–h symmetry satisfy

�̃↓(ω) = −�̃↑(−ω) (2.4)

are separated as

�̃σ (ω) = −σ

2
U |µ| + �σ(ω) (2.5)

into a purely static Fock contribution (with local moment |µ|) that alone would survive at the
simple mean-field (MF) level of unrestricted Hartree–Fock; plus an ω-dependent contribution
�σ(ω) containing the spin (and charge) dynamics that, at low energies in particular, dominate
the physics of the problem.

Use of a two-self-energy description provides a tangible means of developing a relatively
simple many-body approach to the AIM that starts from, but successfully transcends the
deficiencies of, the crude MF (or ‘frozen-spin’) approximation. It is moreover a necessity
and not a luxury for problems that do not ubiquitously exhibit Fermi liquid behaviour, but
contain an underlying quantum phase transition to e.g. a degenerate local moment ground
state; the soft-gap AIM [13] provides a specific example [4,10]. The conventional single self-
energy �(ω) can of course be obtained as a by-product of the two-self-energy description:
direct comparison of equations (2.2), (2.3) gives

�(ω) =
1
2 {�̃↑(ω) − �̃↑(−ω) + 2g(ω)�̃↑(ω)�̃↑(−ω)}

1 − 1
2g(ω)[�̃↑(ω) − �̃↑(−ω)]

(2.6)

where g(ω) = [ω+ − �(ω)]−1 = gR(ω) − i sgn(ω)πd0(ω) is the trivial U = 0 propagator.
From this the gross deficiencies of simple MF theory itself are also seen directly. Here
the dynamical �σ(ω)s are neglected, �̃MF

σ (ω) = −(σ/2)U |µ| (equation (2.5)) and hence
�MF(ω) = g(ω)[ 1

2U |µ|]2. At the Fermi level in particular �I
MF(ω = 0) = πd0(ω =

0)[ 1
2U |µ|]2 is non-zero, thus violating Fermi liquid behaviour, and indicative of the broken

symmetry inherent at MF level (which for |µ| �= 0 corresponds to a doubly degenerate local
moment state).
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The LMA has two essential elements [9, 10]. First, it includes in the dynamical �σ(ω)

a non-perturbative class of diagrams (figure 1) that embody dynamical coupling of single-
particle excitations to low-energy transverse spin fluctuations, and hence capture the spin-flip
scattering essential to describe the strong-coupling/Kondo regime for Ũ = U/π�0 � 1.
Other classes of diagrams may also be included [9], but retention of the dynamical spin-flip
scattering processes is essential. These are expressed in terms of the MF propagators (solid
lines in figure 1), namely

Gσ (ω) =
[
ω+ − �(ω) +

σ

2
U |µ|

]−1

(2.7)

with corresponding spectral densities D0
σ (ω) = −π−1 sgn(ω) Im Gσ (ω); and �↑(ω) =

�R
↑ (ω) − i sgn(ω)�I

↑(ω) is given explicitly by

�↑(ω) = U 2
∫ ∞

−∞

dω1

π
Im �+−(ω1)[θ(ω1)G−

↓ (ω1 + ω) + θ(−ω1)G+
↓(ω1 + ω)] (2.8)

where

G±
σ (ω) =

∫ ∞

−∞
dω1

D0
σ (ω1)θ(±ω1)

ω − ω1 ± i0+
(2.9)

are one-sided Hilbert transforms (θ(x) is the unit step function). Here, �+−(ω) is the trans-
verse spin polarization propagator (shown hatched in figure 1). It is given at the simplest level
by an RPA-like particle–hole ladder sum in the transverse spin channel; namely,

�+−(ω) = 0�+−(ω)/[1 − U 0�+−(ω)] (2.10)

where 0�+−(ω) is the bare particle–hole bubble, itself expressed in terms of the MF
propagators.

Σσ =
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Figure 1. The principal contribution to the LMA �σ (ω); see the text. Wavy lines denote U .

The second, key idea behind the LMA is symmetry restoration: restoration of the broken
symmetry endemic at MF level, via the spin-flip dynamics embodied in�σ(ω). This is reflected
mathematically in �̃R

↑ (0) = �̃R
↓ (0), i.e. (using p–h symmetry) by

�̃R
↑ (0) = − 1

2U |µ| + �R
↑ (0) = 0. (2.11)

Imposition of equation (2.11) as a self-consistency equation is achieved in practice for given
Ũ by varying the local moment |µ| from its MF value. It preserves the U -independent pinning
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of the Fermi level spectrum (π�0D(ω = 0) = 1 ∀U ), and in turn leads correctly to Fermi
liquid behaviour at low energies [9]. Most importantly it introduces naturally a low-energy
spin-flip scale ωm—manifest in particular in a strong resonance in Im �+−(ω) centred (by
definition of ωm) on ω = ωm—that sets the timescale for symmetry restoration. This is the
Kondo scale. Its form for strong coupling, namely ωm ∝ exp(−πU/8�0) (discussed further
below) is asymptotically exact.

The LMA is readily implemented, as considered in [9] with �+−(ω) given by the p–h
ladder sum equation (2.10). For weak coupling, Ũ → 0, it is perturbatively exact to/including
second order in U about the non-interacting limit. More importantly, in the strong-coupling
regime the exponentially narrow Kondo resonance is captured, and exhibits universal (U -
independent) scaling in terms of ω/ωm; or, equivalently, in terms of ω/ωK where the Kondo
energy ωK (∝ωm) is defined as the HWHM of D(ω).

The universal scaling regime is reached in practice for Ũ � 4 [9], and it is this we
focus on here. Our aim is to obtain the LMA scaling spectrum analytically, and to do so in
the first instance with only rather minimal assumptions about the form of the transverse spin
polarization propagator �+−(ω).

3. Scaling spectrum: general considerations

To obtain the scaling form of the Kondo/Abrikosov–Suhl resonance for strong coupling, one
considers finite ω̃ = ω/ωm in the limit ωm ∝ exp(−πU/8�0) → 0; the Hubbard satellites
centred on |ω| = U/2 are naturally not part of the scaling spectrum, and are thereby projected
out. Hence, referring to equation (2.3), the ‘bare’ ω = ωmω̃ ≡ 0 may be neglected, and
likewise �(ω) = �(ωmω̃) reduces to �(0) = −i sgn(ω)�0. The spectrum then follows from
equation (2.3) as

π�0D(ω) = 1

2

∑
σ

(1 + �−1
0 �I

σ (ω))

(�−1
0 �̃R

σ (ω))
2 + (1 + �−1

0 �I
σ (ω))

2
(3.1)

(where �̃I
σ (ω) = �I

σ (ω)). As expected, its scaling behaviour is determined exclusively by
that of the interaction self-energies; and we note in passing that equation (3.1) is quite general
(i.e. provided the host is metallic, it applies for any one-electron hybridization �(ω)).

The LMA �σ(ω) is given by equation (2.8), and for strong coupling the transverse spin
polarization propagator Im �+−(ω) has the following functional form [9]:

1

π
Im �+−(ω) = A

ωm
f (ω̃)θ(ω̃) (3.2)

with ∫ ∞

0

dω

π
Im �+−(ω) = 1 = A

∫ ∞

0
dy f (y). (3.3)

Three points should be noted here. First, Im �+−(ω) naturally scales in terms of ω/ωm.
Second, equation (3.3) reflects physically the saturation of the local moment (|µ| → 1) and
total suppression of double occupancy for strong coupling. Third, the function f (ω̃) is peaked
at ω̃ = 1 (by definition ofωm), and f (ω̃) ∼ ω̃ as ω̃ → 0. The above strong-coupling behaviour
arises explicitly [9] with �+−(ω) given by the p–h ladder sum equation (2.10), from which
f (ω̃) is found to have the form

f (ω̃) = ω̃

1 − 2αω̃ + ω̃2
. (3.4)

In the following, however, we proceed without reference to the specific form of f (ω̃), which
will be required only in section 5.
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From equations (2.8) and (3.2) it follows directly that

�I
↑(ω) = θ(−ω̃)πU 2A

∫ |ω̃|

0
dy f (y)D0

↓(ωm[y + ω̃]) (3.5)

where D0
↓(ωm[y + ω̃]) ≡ D0

↓(0) since we consider finite ω̃ with ωm → 0. From equation (2.7)

π�−1
0 D0

↓(0) = [( 1
2U |µ|)2 + �2

0]−1 generally, so for strong coupling (Ũ � 1, |µ| → 1)

πU 2D0
↓(0) = 4�0. (3.6)

Equation (3.5) thus reduces to

�−1
0 �I

↑(ω) = θ(−ω̃) 4A
∫ |ω̃|

0
dy f (y). (3.7)

As required from equation (3.1), �−1
0 �I

σ (ω) thus scales solely in terms of ω̃ = ω/ωm

with no Ũ -dependence (A is a pure number of order 1, determined via the ‘normalization’
equation (3.3)).

Likewise, using equations (2.8) and (3.2),

�R
↑ (ω) = U 2A

∫ ∞

0
dy f (y)Re G−

↓ (ωm[y + ω̃]) (3.8)

the ω̃-dependence of which is controlled by that of Re G−
↓ (ω) as ω → 0. Since the latter

is given from equation (2.9) as a one-sided transform, its low-ω behaviour is logarithmically
divergent and given by [9]

U 2 Re G−
↓ (ω)

ω→0∼ U 2D0
↓(0) ln

[
λ

|ω|
]

= 4�0

π
ln

[
λ

|ω|
]

(3.9)

(using equation (3.6)). Here, λ = min[D,U/2] is a high-energy cut-off (withD the bandwidth
of �I(ω)); its precise value is immaterial in what follows. From equations (3.8), (3.9),

�−1
0 �R

↑ (ω) = 4

π
ln

[
λ

ωm

]
− 4

π
A

∫ ∞

0
dy f (y) ln |y + ω̃|. (3.10)

The U -dependence of the Kondo scale ωm now follows from the symmetry restoration
condition (2.11), namely �R

↑ (ω = 0) = U/2 for strong coupling. Using equation (3.10) this
is given simply by

ωm = cω′
m (3.11a)

where c is a U -independent constant of order unity given by

c = exp

[
−A

∫ ∞

0
dy f (y) ln(y)

]
(3.11b)

and

ω′
m = λ exp

[
− πU

8�0

]
. (3.11c)

The exponent of ωm, namely exp(−πU/[8�0]), is asymptotically exact for strong coupling
(see e.g. [2]); the prefactor is of course approximate, and reflects the uv cut-off used in
equation (3.9).

Since �̃R
↑ (ω = 0) = 0 (equation (2.11)) has been enforced self-consistently, �̃R

σ (ω) ≡
�R

σ (ω) − �R
σ (0) (see equation (2.5)), and is given from equation (3.10) by

�−1
0 �̃R

↑ (ω) = −4A

π

∫ ∞

0
dy f (y) ln

∣∣∣∣1 +
ω̃

y

∣∣∣∣ . (3.12)
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As for �−1
0 �I

↑(ω) (equation (3.7)), �−1
0 �̃R

↑ (ω) also scales solely in terms of ω̃ = ω/ωm with

no explicit Ũ -dependence, as required from equation (3.1) for universal scaling of π�0D(ω)

to arise.
Finally, the quasiparticle weight Z = [1 − (∂�R(ω)/∂ω)ω=0]−1, defined in terms

of the single self-energy �(ω), is also readily obtained. From equations (2.4), (2.11),
�̃R

↑ (ω) ≡ �̃R
↓ (ω) ∝ ω as ω → 0; and �̃I

σ (ω) (=�I
σ (ω)) ∝ ω2 (equation (3.7) using

f (y) ∼ y as y → 0). Hence from equation (2.6), �R(ω) ≡ �̃R
σ (ω) ∝ ω as ω → 0, so

Z ≡ [1 − (∂�̃R
σ (ω)/∂ω)ω=0]−1 is given from equation (3.12) (remembering that ωm → 0) by

1

�0Z
= 1

ωm

4A

π

∫ ∞

0
dy

f (y)

y
. (3.13)

Since the problem is characterized by a single low-energy scale, �0Z ∝ ωm as expected, with
the proportionality given explicitly by equation (3.13).

Equations (3.7), (3.12) (together with p–h-symmetry equation (2.4)) provide the basic
scaling forms for �−1

0 �I
σ (ω) and �−1

0 �̃R
σ (ω) that enable the scaling spectrum, equation (3.1),

to be obtained; they will be evaluated explicitly in section 5 for a particular form of f (ω̃).

4. Spectral tails

We consider first the behaviour of the spectral ‘tails’, |ω̃| = |ω|/ωm � 1, since the predicted
form is not essentially dependent on details of the function f (ω̃) that determines the transverse
spin polarization propagator (equation (3.2)). From equations (3.7), (3.3), �−1

0 �I
↑(ω) is given

asymptotically for |ω̃| � 1 by

�−1
0 �I

↑(ω) = 4θ(−ω̃). (4.1a)

Likewise �−1
0 �R

↑ (ω) (equation (3.12)) reduces for |ω̃| � 1 to

�−1
0 �̃R

↑ (ω) = −4A

π

∫ ∞

0
dy f (y) ln(|ω̃|/y)

and hence using equations (3.3), (3.11) to

�−1
0 �̃R

↑ (ω) = −4

π
ln

[ |ω|
ω′

m

]
. (4.1b)

The resultant spectrum for |ω̃| � 1 then follows from equation (3.1) as

π�0D(ω) = 1

2

{
1

[(4/π) ln(|ω′|)]2 + 1
+

5

[(4/π) ln(|ω′|)]2 + 25

}
(4.2)

where ω′ = ω/ω′
m.

The scaling spectrum is thus predicted to have a slowly varying logarithmic tail, and not
Doniach–S̆unjić (DS) [8] behaviour of form D(ω) ∼ (|ω|/ωK)

−1/2. The latter has hitherto
been argued to arise from a numerical renormalization group (NRG) study of the asymmetric
AIM [3] in the one-hole sector, ω < 0; and, for the symmetric AIM, from both quantum
Monte Carlo/maximum-entropy studies [5, 6] at finite temperatures and moderate interaction
strength, as well as recent (T = 0) NRG work [4] (which data will be re-examined below). In
all these cases, the tail behaviour was inferred from either comparison or fitting to an empirical
DS form.

For reasons now explained we believe the logarithmic tails of equation (4.2), and not
the DS behaviour, to be correct. On physical grounds one expects the behaviour of dynamical
properties at high frequencies, |ω|/ωK � 1, to mirror that of static thermodynamic or transport
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properties at high temperatures, T/TK � 1 (where the Kondo temperature TK ∝ ωK); and
for which asymptotic behaviours are characteristically of form [ln(T /TK)]−n (see e.g. [2]). A
specific relevant example of the latter is provided by the impurity resistivity ρ(T ), which at
high temperatures probes in effect the high-energy tails of the single-particle spectrum. For
the antiferromagnetic Kondo/s–d model without potential scattering (which for spin S = 1

2
is the strong-coupling limit of the symmetric AIM under a Schrieffer–Wolff transformation),
parquet resummation leads to the well known Hamann [14] result for ρ(T )/ρ(0); its leading
high-temperature behaviour is asymptotically exact and given by

ρ(T )

ρ(0)
= π2S(S + 1)

4

1

[ln(T /TK)]
2 . (4.3)

For the S = 1
2 case, equation (4.3) with T replaced by |ω| recovers precisely the asymptotic

high-frequency behaviour arising from equation (4.2), namely π�0D(ω) ≡ D(ω)/D(0) ∼
(3π2/16)[ln(|ω|/ω′

m)]
−2 (where ω′

m ∝ ωK). It can in fact be shown, starting from the general
formula [2] for ρ(T )/ρ(0) and assuming that the asymptotic high-frequency behaviour of the
single-particle spectrum is given from equation (4.2), that equation (4.3) arises directly.

The second reason we believe equation (4.2) to be correct is simple: direct comparison
to the NRG-determined scaling spectrum for the symmetric AIM [4], specifically π�0D(ω)

versus ω/ωK (with ωK the HWHM in D(ω)). As discussed in section 5 below we find for the
LMA that ωK/ω

′
m = 0.691, so equation (4.2) is directly expressible in terms of |ω|/ωK. The

resultant comparison is shown in figure 2 for ω/ωK up to 500.

0 100 200 300 400 500

ω / ω
K

0

0.05

0.1

0.15

0.2

π∆
0D

(ω
)

0 5000 10000
0

0.1

0.2

0.3

Figure 2. The scaling spectrum π�0D(ω) versus ω/ωK. The NRG result (dashed line) compared
to the LMA asymptotic form equation (4.2) (solid line). Inset: on an expanded scale out to
ω/ωK = 104.

The asymptotic behaviour predicted by equation (4.2) gives excellent agreement with the
NRG data for ω/ωK � 10 or so; and we note that the full form of equation (4.2) is required
for such agreement (i.e. it is not exclusively dominated by its ultimate large-ω asymptote
∼[ln(|ω|/ωK)]−2). Since the NRG calculations are of course for finite Ũ they naturally show
Hubbard satellites at sufficiently large ω/ωK, with deviations from universal scaling arising
for ω � O(�0); this is illustrated in the inset to figure 2 (for Ũ = 6).
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We believe the preceding analysis gives sound theoretical grounds for the logarithmic
tails embodied in equation (4.2), which as above are well supported by comparison to NRG
calculations. But what of the DS tail behaviour that has hitherto been suggested? As shown
in reference [4], the NRG spectral tails can indeed be empirically well fitted to the form
π�0D(ω) = a + b(|ω|/ωK)

−1/2. Two points should however be noted. (i) The resultant fit,
while good even up to |ω|/ωK ∼ 100, is noticeably poorer than that to equation (4.2). (ii) A
fit to a + b(|ω|/ωK)

−1/2 requires a �= 0 to capture the NRG-calculated tail; while the form
b(|ω|/ωK)

−1/2, which is the strict DS asymptote [8], is simply not quantitatively sufficient.
Our view in short is that DS behaviour does not arise, and that the slower logarithmic decay
of equation (4.2) represents the natural asymptotic behaviour.

Finally, note that the asymptotic behaviour of �̃↑(ω) (equation (4.1)) may be used in
conjunction with equation (2.6) to deduce the corresponding asymptotics of the conventional
single self-energy�(ω); this will be considered, and compared to NRG results, in the following
section.

5. Scaling spectrum and single self-energy

We turn now to the LMA scaling spectrum on all energy scales, to which end we must consider
the details of f (ω̃) that determines the transverse spin polarization propagator equation (3.2).

With �+−(ω) given by the p–h ladder sum equation (2.10), f (ω̃) has been shown [9] to
have the form equation (3.4), where the Ũ -dependence of α (and A, see equation (3.2)) is
given explicitly in reference [9]. From this it is readily shown that in SC Ũ � 1, α → 1
and A ∼ [2(1 − α)]1/2/π → 0, such that Af (y) ≡ δ(y − 1), i.e. from equation (3.2)
(1/π) Im �+−(ω) = δ(ω − ωm) reduces to a delta function centred on the Kondo scale ωm;
from now on we refer to this as the LMA(RPA). From equations (3.7), (3.12) it follows directly
that

�−1
0 �̃R

↑ (ω) = − 4

π
ln |1 + ω′| (5.1a)

�−1
0 �I

↑(ω) = 4θ(−[1 + ω′]) (5.1b)

whereω′ = ω/ω′
m (andωm ≡ ω′

m, from equation (3.11)). The LMA(RPA) scaling spectrum in
closed form then follows from equation (3.1); specifically for ω′ > 0 (since D(ω) = D(−ω))
by

π�0D(ω) = 1

2

{
1

[(4/π) ln |ω′ + 1|]2 + 1
+

1 + 4θ(ω′ − 1)

[(4/π) ln |ω′ − 1|]2 + [1 + 4θ(ω′ − 1)]2

}
. (5.2)

Equation (5.2) reproduces fully the LMA(RPA) scaling spectrum determined numerically
in reference [9] (figure 8 therein). For ω′ � 1 (in practice ω′ � 5), it naturally recovers
the asymptotic behaviour equation (4.2) that is independent of the specific LMA(RPA).
And the Kondo energy ωK is readily determined from the HWHM of equation (5.2) to be
ωK/ω

′
m = 0.691 (as noted in section 4). From equation (3.13) with Af (y) = δ(y − 1),

�0Z = πωm/4, and hence the low-frequency behaviour of the LMA(RPA) scaling spectrum
follows from equation (5.2) as

π�0D(ω) ∼ 1

1 + [ω/(�0Z)]2
. (5.3)

This is precisely the spectrum arising from microscopic Fermi liquid theory to leading order [2]
(i.e. from the quasiparticle form G(ω) ∼ [ω+/Z + i sgn(ω)�0]−1). A pure Lorentzian arises
also from a spinon approximation DS(ω) to the single-particle spectrum, obtained from the
Bethe ansatz as [15] DS(ω)/DS(0) = [1 + (ω/[ 1

2�0Z])2]−1. However equation (5.3) itself is
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of course confined to |ω|/�0Z � 1—the Lorentzian tails it would otherwise predict are far
from correct, as we have seen.

The deficiencies of the LMA(RPA)D(ω) are not great; as shown in reference [4] (figure 10,
inset), it gives good agreement with the full NRG scaling spectrum. Its principal limitation
is for |ω′| ∼ 1 where (see equation (5.2)) a small but anomalous ‘dip’ arises in D(ω). This
is purely an artifact of the specific RPA-like form for the polarization propagator, reflected in
the fact that the resultant Im �+−(ω) for strong coupling becomes a δ-function at ω = ωm: in
reality, one additionally expects Im �+−(ω) to have a width on the order of ωm.

To remedy this deficiency we take a different route from that hitherto considered briefly
in [9], which will also prove useful in subsequent work on spectral dynamics in a magnetic
field. We retain phenomenologically the form equation (3.4) for f (ω̃), which has both its
maximum at ω̃ = ω/ωm = 1 for any α ∈ (0, 1) and a finite FWHM = 2[(2 − α)2 − 1]1/2

provided α �= 1; and we employ a high-frequency cut-off ω̃c (to render f (ω̃) normalizable,
equation (3.3)). The parameter α is then determined by requiring that limω→0(�

I(ω)/ω2) is
obtained exactly (with �I(ω) the conventional single self-energy), i.e. [2]

�−1
0 �I(ω)

ω→0∼ 1

2

[
ω

�0Z

]2

. (5.4)

�(ω) itself is related to �̃↑(ω) by equation (2.6), and the low-ω behaviour of the latter
is �−1

0 �̃R
↑ (ω) ∼ −ω/�0Z and �−1

0 �I
↑(ω) ∼ θ(−ω̃)2Aω̃2 (from equation (3.7)), with

ω̃ = ω/ωm. From this it is straightforward to show that equation (5.4) is correctly recovered
if

A = 1

2

[
ωm

�0Z

]2

. (5.5)

Equations (3.3), (3.13) and (5.5) then imply

1 = 8

π2

[∫ ω̃c

0
dy

f (y)

y

]2/∫ ω̃c

0
dy f (y) (5.6)

which thereby determines α for the chosen cut-off ω̃c. The latter is of course arbitrary, but as
expected physically, results are not sensitive to it provided it is neither too small nor too large.
In practice we choose ω̃c = 10 (α = 0.308); and we note in particular that the resultant Kondo
energy ωK differs insignificantly from its LMA(RPA) value of ωK/ω

′
m = 0.691 (with ω′

m from
equation (3.11c)).

The consequent LMA spectrum is shown in figure 3, and is seen to be in excellent agree-
ment with the NRG scaling spectrum [4] over essentially the entire frequency range. At low
frequencies in particular, the exact asymptotic behaviour of D(ω) for strong coupling is

π�0D(ω) ∼ 1 − [�−1
0 �R(ω)]2 − �−1

0 �I(ω) (5.7a)

∼ 1 − 3

2

[
ω

�0Z

]2

(5.7b)

as follows from equation (2.2) using �−1
0 �R(ω) ∼ −ω/�0Z together with equation (5.4) for

�−1
0 �I(ω). This is not fully recovered by the microscopic Fermi liquid form equation (5.7) that

arises from the LMA(RPA). It is obtained correctly from the above LMA (since α is chosen
such that equation (5.4) is recovered), although as seen from figure 3 (inset) the behaviour
equation (5.7) is in practice confined to a very narrow frequency domain |ω|/�0Z � 0.1 or so.

We also add, as now explained, that equation (5.7) is not recovered in an entirely consistent
fashion from NRG results [4]. As discussed by Bulla, Hewson and Pruschke [12] (BHP), there
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Figure 3. The scaling spectrum π�0D(ω) versus ω/ωK. The NRG result (dashed line) compared
to LMA (full line). Inset: the LMA π�0D(ω) versus ω/�0Z (solid line) compared to exact
low-frequency asymptote equation (5.7b) (dotted).

are two essential ways in which the NRG spectrum may be calculated in practice. (i) Directly,
with D(ω) obtained as a set of δ-functions with associated weights (which are then broadened
on a logarithmic scale to recover the continuum); this is the traditional approach [16, 17].
(ii) Or, as introduced by BHP [12], the single self-energy itself is first calculated as a ratio
of two correlation functions, and is then used in equation (2.2) to obtain D(ω). This is
the method of choice, since in contrast to the traditional approach it guarantees the spectral
sum rule

∫ ∞
−∞ dω D(ω) = 1, and significantly reduces deviations from the Friedel sum rule

(π�0D(ω = 0) = 1) [12]. The NRG data shown in figures 2, 3 have been thus obtained.
There are two ways in which the quasi-particle weight Z may then be determined. Either

directly, from (∂�R(ω)/∂ω)ω=0 = −(Z−1 − 1) (∼−1/Z for strong coupling) which defines
Z; or by comparison of �−1

0 �I(ω) at low frequencies to the exact asymptote equation (5.4).
The two resultant Zs differ quite significantly for strong coupling, typically by some 20% or
so for the NRG calculations reported in reference [4]. (Alternatively but equivalently, if Z is
determined in the natural way from (∂�R(ω)/∂ω)ω=0, then equation (5.4) for �−1

0 �I(ω) is not
correctly obtained.) In consequence equation (5.7b) is not recovered consistently, although
we emphasize (a) that this is of course confined to the low-frequency regime, and (b) it should
be alleviated by more accurate NRG calculations.

We now consider the scaling behaviour of the resultant single self-energy �(ω) that arises
from the LMA; this follows directly from equation (2.6) once �̃↑(ω) is known. The behaviour
of �̃↑(ω) for |ω| � 1 is given by equations (4.1), independently of the particular LMA
considered. From this one finds the asymptotic high-frequency form of �I(ω) and �R(ω)

to be

�−1
0 �I(ω) ∼ 2

3

[
1 +

8

π2
ln2(|ω′|)

]
(5.8a)
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�−1
0 �R(ω) ∼ −sgn(ω)

16

3π
ln |ω′| (5.8b)

with ω′ = ω/ω′
m. The logarithmically divergent behaviour of �(ω) is striking, and (via the

definition �(ω) = ω+ −�(ω)−G−1(ω)) is a direct consequence of the asymptotic behaviour
equation (4.2) of π�0D(ω) that has been shown (figure 2) to give excellent agreement with
NRG results. Note moreover that equations (5.8) are fully compatible with the Hilbert
transform π�R(ω) = ∫ ∞

−∞ dω1 �I(ω1)P (1/(ω − ω1)); using which, a knowledge solely
of �I(ω) for |ω′| � 1 (equation (5.8a)) is readily shown to imply precisely the asymptotic
behaviour equation (5.8b) for �R(ω).

Figure 4 shows �−1
0 �I(ω) arising from the LMA (as specified above with α = 0.308).

The low-frequency behaviour�−1
0 �I(ω) ∼ 1

2 [ω/�0Z]2 is recovered exactly (by construction),
and the asymptotic behaviour equation (5.8a) is rapidly approached for |ω|/ωK � 2–3 or so;
the latter is shown explicitly in figure 4 for ω/ωK > 10 where it lies within ∼10% of the full
�−1

0 �I(ω). Figure 4 also shows NRG results for�−1
0 �I(ω) for the particular case Ũ = 5, with

which the LMA self-energy is seen to be in very good agreement. Deviations of the NRG self-
energy from the LMA scaling form set in steadily for |ω|/ωK � 20–30. This reflects simply
the finite Ũ used, which naturally leads to deviations from universality when ω becomes of
order �0 (�0/ωK ∼ 80 for Ũ = 5); but with progressively increasing Ũ the NRG self-energy
falls on the scaling curve out to progressively larger values of ω/ωK.
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Figure 4. Scaling behaviour of a single self-energy, �−1
0 �I(ω) versus ω/ωK. The LMA result

(solid line), compared for |ω|/ωK > 10 to high-frequency asymptote equation (5.8a) (dotted line);
and to the NRG result for Ũ = 5 (dashed line).

6. Summary

We have considered in this paper a local moment approach to the single-particle spectrum
D(ω) of the symmetric Anderson impurity model, focusing on the universal scaling behaviour
characteristic of the strong-coupling/Kondo regime, for which the LMA has been shown to
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provide a simple analytical description. From previous numerical studies [3–6] it is known
in particular that D(ω) contains a long tail that is not only an integral part of the scaling
spectrum, but in fact dominates its behaviour (the crossover to the Fermi liquid form occurring
only on the lowest energy scales (|ω|/ωK � 1)). The LMA predicts this tail to exhibit a
very slow logarithmic decay, rather than the power-law behaviour hitherto believed [3–6] to
arise. This prediction has been shown to be very well supported by NRG calculations, and
further supporting arguments for its form were given. More generally the LMA is found to
give good agreement, over essentially the entire frequency range, with NRG calculations for
both the scaling spectrum and conventional single self-energy �(ω) (the latter in particular
being predicted to exhibit rather striking logarithmically divergent behaviour for |ω|/ωK � 1).
The LMA itself is an intrinsically simple, non-perturbative many-body approach [9–11] to the
dynamics of quantum impurity and related models; the key notion behind it being that of
‘symmetry restoration’ within the framework of an underlying two-self-energy description.
Despite the unconventional nature of the approach, we believe the results presented here
provide further evidence for its veracity.
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